

 Navigation

 	
 index

 	
 next |

 	Sikre 0.1alpha documentation

Sikre: Password storage API

What is Sikre?

Sikre (or the service equivalent, sikr.io) is a secure password storage API to
protect all your passwords, SSH keys, SSL certificates, or other sensible
information that you might have.

The principle of Sikre is “no one knows nothing” (insert John Snow joke here)
so there is no hidden administration, no interfaces to administer the site
or helpers to help you fix something that might go wrong (don’t worry, even
if the API fails, the data is secure). Unfortunately, that means also
that we don’t implement any methods for recovering data, so if you forget
you master password or accidentally delete something, no one can recover it.

Is there any support then?

Yes there is, I actively develop this application, and I’m all ears regarding
new features or bugs that you might have find, specially if they’re related
to the security of the API.

Contents:

	Installation

	API endpoints
	Authentication

	Categories

	Items

	Services

	Generic

	Reference
	Middleware

	Support

	FAQ

 Last updated on Jul 04, 2016.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Sikre 0.1alpha documentation

Installation

 Last updated on Jul 04, 2016.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Sikre 0.1alpha documentation

API endpoints

Sikre is a REST type API, here is the list of all it’s endpoints and required
methods.

Authentication

Categories

Categories is the top level data that you can have, inside the categories you
can find the items and the services. An example of a category could be
“Facebook”, in case you have more than one Facebook password or service or
for example “Google” and inside you store multiple items with your GMail accounts
and other services like Analytics, etc.

	GET /v1/categories

	Return a list of all the category objects assigned or created to/for that
user. The information returned is only the name and the id of the
category.

Example JSON:

[
 {
 "id": 4,
 "name": "Category 1"
 },
 {
 "id": 5,
 "name": "Category 2"
 },
 {
 "id": 6,
 "name": "Category 3"
 }
]

	POST /v1/categories

	Saves the information for a new category. The only data needed is the
category name.

Example JSON:

{
 "name": "Category 4"
}

The rest of the information is worked out through the JWT token sent in
the header.

Specific categories

	GET /v1/categories/<id>

	Return the information of a specific category, the result is the same as
for the whole categories list, but only for one object.

Example JSON:

[
 {
 "id": 4,
 "name": "Category 1"
 },
]

	PUT /v1/categories/<id>

	This method is used to edit an existing category. The UI retrieves the
category and after the user modifies the content, we send back a PUT
request with the new information. The only data needed is the category
name.

Example JSON:

{
 "name": "Category 4-1"
}

The rest of the information is worked out through the JWT token sent in
the header.

	DELETE /v1/categories/<id>

	This method deletes a specified category and all it’s siblings, that
means, if the category contains items or services inside the items, everything
will be deleted.

Items

Services

Generic

Generic endpoints provide information about the API and also serve the purpose
of testing the API.

 Last updated on Jul 04, 2016.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Sikre 0.1alpha documentation

Reference

This is a reference of all the methods withing the API.

Middleware

	
class sikre.middleware.handle_404.WrongURL[source]

	
	
process_response(req, resp, resource='')[source]

	Intercept main 404 response by Falcon

If the API hits a non existing endpoint, it will trigger a customized
404 response that will redirect people to the documentation.

	Raises:	HTTP 404 –
A falcon.HTTP_404 error

	Returns:	A customized JSON response

	Return type:	JSON

	
class sikre.middleware.headers.BaseHeaders[source]

	
	
process_request(req, res)[source]

	Process the request before entering in the API

Before we process anything in the API, we reset the Origin header to
match the address from the request.

	Parameters:	Access-Control-Allow-Origin – Change the origin to the URL that made
the request.

	Raises:	HTTP Error –
An HTTP error in case the Origin header doesn’t match
the predefined regular expression.

	Returns:	A modified set of headers.

	Return type:	HTTP headers

	
process_response(req, res, resource)[source]

	Process the response before returning it to the client.

In the reutrning reponse we change some values to be able to overcome
the CORS protection and mask the origin server. The CORS interaction
is protected by a check agains a regular expression to make sure the
origin is a website-like URL.

Warning

If you are really concerned about security, you can deactivate
the CORS allowance by turning CORS_ACTIVE to False in your settings
file. That will force the application to answer to the SITE_DOMAIN
domain.

	Parameters:	
	Server (string) – Changes the server name sent to the browser in the
response to avoid exposure of name and version of the same.

	Access-Control-Allow-Origin (string) – Change the origin name to
match the one that made the request. That way we can allow CORS
anywhere.

	Raises:	
	HTTP Error –
An HTTP error in case the Origin header doesn’t match

	the predefined regular expression.

	Returns:	A modified set of headers

	Return type:	HTTP headers

	
class sikre.middleware.https.RequireHTTPS[source]

	Force the connection to be HTTPS.

Middleware that intercepts all the requests and checks that is over an HTTPS
protocol before continuing. The only exception to this is the DEBUG mode,
in which we allow connections from non-HTTPS sources.

	Raises:	HTTP Bad Request –
If the connection is not HTTPS the API will complain

	Returns:	Error mentioning the HTTPS connection is required

	Return type:	JSON

	
class sikre.middleware.json.RequireJSON[source]

	

	
class sikre.middleware.json.JSONTranslator[source]

	

 Last updated on Jul 04, 2016.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Sikre 0.1alpha documentation

Support

To be written

 Last updated on Jul 04, 2016.

 Navigation

 	
 index

 	
 previous |

 	Sikre 0.1alpha documentation

FAQ

 Last updated on Jul 04, 2016.

 Navigation

 	
 index

 	Sikre 0.1alpha documentation

Index

 B
 | J
 | P
 | R
 | W

B

 	

 	BaseHeaders (class in sikre.middleware.headers)

J

 	

 	JSONTranslator (class in sikre.middleware.json)

P

 	

 	process_request() (sikre.middleware.headers.BaseHeaders method)

 	

 	process_response() (sikre.middleware.handle_404.WrongURL method)

 	

 	(sikre.middleware.headers.BaseHeaders method)

R

 	

 	RequireHTTPS (class in sikre.middleware.https)

 	

 	RequireJSON (class in sikre.middleware.json)

W

 	

 	WrongURL (class in sikre.middleware.handle_404)

 Last updated on Jul 04, 2016.

 _static/down-pressed.png

_static/up.png

_static/minus.png

_static/plus.png

_static/comment-bright.png

_static/ajax-loader.gif

_static/file.png

_static/up-pressed.png

search.html

 Navigation

 		
 index

 		Sikre 0.1alpha documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 Last updated on Jul 04, 2016.

_static/comment-close.png

_static/comment.png

_modules/sikre/middleware/json.html

 Navigation

 		
 index

 		Sikre 0.1alpha documentation »

 		Module code »

 Source code for sikre.middleware.json

Copyright 2014-2015 Clione Software and Havas Worldwide London
#
Licensed under the Apache License, Version 2.0 (the "License"); you may not
use this file except in compliance with the License. You may obtain a copy
of the License at http:#www.apache.org/licenses/LICENSE-2.0
#
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
License for the specific language governing permissions and limitations
under the License.

import json

import falcon

from sikre import settings

[docs]class RequireJSON(object):

 def process_request(self, req, resp):
 if not req.client_accepts_json:
 raise falcon.HTTPNotAcceptable(
 'This API only supports responses encoded as JSON.',
 href=settings.__docs__)

 if req.method in ('POST', 'PUT'):
 if 'application/json' not in req.content_type:
 raise falcon.HTTPUnsupportedMediaType(
 'This API only supports requests encoded as JSON.',
 href=settings.__docs__)

[docs]class JSONTranslator(object):

 def process_request(self, req, resp):
 # req.stream corresponds to the WSGI wsgi.input environ variable,
 # and allows you to read bytes from the request body.
 #
 # See also: PEP 3333
 if req.content_length in (None, 0):
 # Nothing to do
 return

 body = req.stream.read()
 if not body:
 raise falcon.HTTPBadRequest('Empty request body',
 'A valid JSON document is required.')

 try:
 req.context['doc'] = json.loads(body.decode('utf-8'))

 except (ValueError, UnicodeDecodeError):
 raise falcon.HTTPError(falcon.HTTP_753,
 'Malformed JSON',
 'Could not decode the request body. The '
 'JSON was incorrect or not encoded as '
 'UTF-8.')

 def process_response(self, req, resp, resource):
 if 'result' not in req.context:
 return

 resp.body = json.dumps(req.context['result'])

 Last updated on Jul 04, 2016.

_modules/sikre/middleware/headers.html

 Navigation

 		
 index

 		Sikre 0.1alpha documentation »

 		Module code »

 Source code for sikre.middleware.headers

Copyright 2014-2015 Clione Software and Havas Worldwide London
#
Licensed under the Apache License, Version 2.0 (the "License"); you may not
use this file except in compliance with the License. You may obtain a copy
of the License at http:#www.apache.org/licenses/LICENSE-2.0
#
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
License for the specific language governing permissions and limitations
under the License.

import re

import falcon

from sikre import settings
from sikre.utils.logs import logger

[docs]class BaseHeaders(object):
 # Unused regular expression to check that origin is always a website.
 # expression = re.compile("^(https?:\/\/)?([\da-z\.-]+)\.([a-z\.]{2,6})([\/\w \.-]*)*\/?$")

[docs] def process_request(self, req, res):

 """Process the request before entering in the API

 Before we process anything in the API, we reset the Origin header to
 match the address from the request.

 Args:
 Access-Control-Allow-Origin: Change the origin to the URL that made
 the request.

 Raises:
 HTTP Error: An HTTP error in case the Origin header doesn't match
 the predefined regular expression.

 Return:
 HTTP headers: A modified set of headers.

 """

 origin_domain = req.get_header('Origin')
 logger.debug("Origin domain is: {}, type: {}".format(origin_domain, type(origin_domain)))
 origin_header = origin_domain if settings.CORS_ACTIVE and origin_domain else "*"
 logger.debug("Origin header is: {}, type: {}".format(origin_header, type(origin_header)))

 res.set_headers([
 ('Cache-Control', 'no-store, must-revalidate, no-cache, max-age=0'),
 ('Content-Type', 'application/json; charset=utf-8'),
 ('Access-Control-Allow-Credentials', 'true'),
 ('Access-Control-Allow-Origin', origin_header),
 ('Access-Control-Allow-Headers', 'Origin, X-Requested-With, Content-Type, Accept, x-auth-user, x-auth-password, Authorization'),
 ('Access-Control-Allow-Methods', 'GET, PUT, POST, OPTIONS, DELETE')
])

[docs] def process_response(self, req, res, resource):

 """Process the response before returning it to the client.

 In the reutrning reponse we change some values to be able to overcome
 the CORS protection and mask the origin server. The CORS interaction
 is protected by a check agains a regular expression to make sure the
 origin is a website-like URL.

 Warning:
 If you are really concerned about security, you can deactivate
 the CORS allowance by turning CORS_ACTIVE to `False` in your settings
 file. That will force the application to answer to the SITE_DOMAIN
 domain.

 Args:
 Server (string): Changes the server name sent to the browser in the
 response to avoid exposure of name and version of the same.
 Access-Control-Allow-Origin (string): Change the origin name to
 match the one that made the request. That way we can allow CORS
 anywhere.

 Raises:
 HTTP Error: An HTTP error in case the Origin header doesn't match
 the predefined regular expression.

 Returns:
 HTTP headers: A modified set of headers
 """

 origin_domain = req.get_header('Origin')
 logger.debug("Origin domain is: {}, type: {}".format(origin_domain, type(origin_domain)))
 origin_header = origin_domain if settings.CORS_ACTIVE and origin_domain else "*"
 logger.debug("Origin header is: {}, type: {}".format(origin_header, type(origin_header)))

 res.set_headers([
 ('Cache-Control', 'no-store, must-revalidate, no-cache, max-age=0'),
 ('Content-Type', 'application/json; charset=utf-8'),
 ('Server', settings.SERVER_NAME),
 ('Access-Control-Allow-Credentials', 'true'),
 ('Access-Control-Allow-Origin', origin_header),
 ('Access-Control-Allow-Headers', 'Origin, X-Requested-With, Content-Type, Accept, x-auth-user, x-auth-password, Authorization'),
 ('Access-Control-Allow-Methods', 'GET, PUT, POST, OPTIONS, DELETE')
])

 Last updated on Jul 04, 2016.

_static/down.png

_modules/index.html

 Navigation

 		
 index

 		Sikre 0.1alpha documentation »

 All modules for which code is available

		sikre.middleware.handle_404

		sikre.middleware.headers

		sikre.middleware.https

		sikre.middleware.json

 Last updated on Jul 04, 2016.

_modules/sikre/middleware/https.html

 Navigation

 		
 index

 		Sikre 0.1alpha documentation »

 		Module code »

 Source code for sikre.middleware.https

Copyright 2014-2015 Clione Software and Havas Worldwide London
#
Licensed under the Apache License, Version 2.0 (the "License"); you may not
use this file except in compliance with the License. You may obtain a copy
of the License at http:#www.apache.org/licenses/LICENSE-2.0
#
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
License for the specific language governing permissions and limitations
under the License.

import falcon

from sikre import settings

[docs]class RequireHTTPS(object):

 """Force the connection to be HTTPS.

 Middleware that intercepts all the requests and checks that is over an HTTPS
 protocol before continuing. The only exception to this is the DEBUG mode,
 in which we allow connections from non-HTTPS sources.

 Raises:
 HTTP Bad Request: If the connection is not HTTPS the API will complain

 Returns:
 JSON: Error mentioning the HTTPS connection is required
 """
 def process_request(self, req, resp):
 if req.protocol == "http" and not settings.DEBUG:
 raise falcon.HTTPBadRequest(title="Client error. HTTP Not Allowed",
 description="API connections over HTTPS only.",
 href=settings.__docs__)

 Last updated on Jul 04, 2016.

_modules/sikre/middleware/handle_404.html

 Navigation

 		
 index

 		Sikre 0.1alpha documentation »

 		Module code »

 Source code for sikre.middleware.handle_404

Copyright 2014-2015 Clione Software and Havas Worldwide London
#
Licensed under the Apache License, Version 2.0 (the "License"); you may not
use this file except in compliance with the License. You may obtain a copy
of the License at http:#www.apache.org/licenses/LICENSE-2.0
#
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
License for the specific language governing permissions and limitations
under the License.

import json

import falcon

from sikre import settings

[docs]class WrongURL(object):

[docs] def process_response(self, req, resp, resource=''):

 """Intercept main 404 response by Falcon

 If the API hits a non existing endpoint, it will trigger a customized
 404 response that will redirect people to the documentation.

 Raises:
 HTTP 404: A falcon.HTTP_404 error

 Returns:
 JSON: A customized JSON response
 """
 if resp.status == falcon.HTTP_404:
 resp.body = json.dumps({"message": "Resource not found",
 "documentation": settings.__docs__})

 Last updated on Jul 04, 2016.

